Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Adv Healthc Mater ; : e2400908, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598819

RESUMO

The implementation of chemoradiation combinations has gained great momentum in clinical practices. However, the full utility of this paradigm is often restricted by the discordant tempos of action of chemotherapy and radiotherapy. Here, a gold nanoparticle-based radiation-responsive nanovesicle system loaded with cisplatin and veliparib, denoted as CV-Au NVs, is developed to augment the concurrent chemoradiation effect in a spatiotemporally controllable manner of drug release. Upon irradiation, the in situ generation of •OH induces the oxidation of polyphenylene sulfide from being hydrophobic to hydrophilic, resulting in the disintegration of the nanovesicles and the rapid release of the entrapped cisplatin and veliparib (the poly ADP-ribose polymerase (PARP) inhibitor). Cisplatin-induced DNA damage and the impairment of the DNA repair mechanism mediated by veliparib synergistically elicit potent pro-apoptotic effects. In vivo studies suggest that one-dose injection of the CV-Au NVs and one-time X-ray irradiation paradigm effectively inhibit tumor growth in the A549 lung cancer model. This study provides new insight into designing nanomedicine platforms in chemoradiation therapy from a vantage point of synergizing both chemotherapy and radiation therapy in a spatiotemporally concurrent manner.

2.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465943

RESUMO

This study aimed to investigate the effects of long-term awake extracorporeal membrane oxygenation (ECMO) on the coagulation system in a sheep model. A total of ten healthy sheep were included in the study, with 5 sheep in each group. In the veno-arterial ECMO (V-A ECMO) group, cannulation was performed in the right carotid artery and the right external jugular vein. In the veno-venous ECMO (V-V ECMO) group, a dual-lumen catheter was utilized to insert into the right external jugular vein. After initiating ECMO, the sheep were recovered from anesthesia and remained awake for 7 days. The target activated clotting time (ACT) goal was set at 220-250 s. In both groups, the actual ACT fluctuated around 250 s with the dose of heparin gradually increasing, reaching almost 60 IU/kg/min at the end of the experiments. Moreover, the activated partial thromboplastin time (APTT) and thrombin time (TT) values were significantly higher in the V-A ECMO group compared to the V-V ECMO group, despite receiving the same doses of heparin. Although laboratory test results fluctuated within a normal and reasonable range, infarct foci in the kidneys were observed in both groups at the end of the study.


Assuntos
Oxigenação por Membrana Extracorpórea , Ovinos , Animais , Oxigenação por Membrana Extracorpórea/métodos , Coagulação Sanguínea , Heparina , Testes de Coagulação Sanguínea , Cateterismo/métodos
3.
ASAIO J ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38421440

RESUMO

Septic shock, a global health concern, boasts high mortality rates. Research exploring the efficacy of venoarterial extracorporeal membrane oxygenation (VA-ECMO) in septic shock remains limited. Our study aimed to establish a rodent model employing VA-ECMO in septic shock rats, assessing the therapeutic impact of VA-ECMO on septic shock. Nineteen Sprague-Dawley rats were randomly assigned to sham, septic shock, and (septic shock + VA-ECMO; SSE) groups. Septic shock was induced by intravenous lipopolysaccharides, confirmed by a mean arterial pressure drop to 25-30% of baseline. Rats in the SSE group received 2 hours of VA-ECMO support and 60 minutes of post-weaning ventilation. Sham and septic shock groups underwent mechanical ventilation for equivalent durations. Invasive mean arterial pressure monitoring, echocardiographic examinations, and blood gas analysis revealed the efficacy of VA-ECMO in restoring circulation and ensuring adequate tissue oxygenation in septic shock rats. Post-experiment pathology exhibited the potential of VA-ECMO in mitigating major organ injury. In summary, our study successfully established a stable septic shock rat model with the implementation of VA-ECMO, offering a valuable platform to explore molecular mechanisms underlying VA-ECMO's impact on septic shock.

4.
Eur J Nucl Med Mol Imaging ; 51(6): 1713-1724, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38216779

RESUMO

PURPOSE: Enzymolysis clearance strategy, characterized by releasing the non-reabsorbable radioactive fragment under the specific cleavage of enzymes, is confirmed to be a safe and effective way to reduce the renal radioactivity accumulation in mice. However, the effectiveness of this strategy in humans remains unknown. Human epidermal growth factor receptor 2 (HER2) is overexpressed in various types of tumors, and radiolabeled HER2 Affibody is believed to be an attractive tool for HER2-targeted theranostics. However, its wide application is limited by the high and persistent renal uptake. In this study, we intend to validate the effectiveness of enzymolysis clearance strategy in reducing renal accumulation by using a modified HER2 Affibody. MATERIALS AND METHODS: A new HER2 Affibody ligand, NOTA-MVK-ZHER2:2891, containing a cleavable Met-Val-Lys (MVK) linker was synthesized and labeled with 68Ga. The microPET imaging study was performed in SKOV-3 tumor mice to assess the uptakes of the control ligand and the MVK one in tumors and kidneys. Seven healthy volunteers were included for biodistribution and dosimetric studies with both the control and MVK ligands performed 1 week apart. Urine and blood samples from healthy volunteers were collected for in vivo metabolism study of the two ligands. Four HER2-positive and two HER2-negative patients were recruited for [68Ga]Ga-NOTA-MVK-ZHER2:2891 PET/CT imaging at 2 and 4 h post-injection (p.i.). RESULTS: [68Ga]Ga-NOTA-MVK-ZHER2:2891 was stable both in PBS and in mouse serum. MicroPET images showed that the tumor uptake of [68Ga]Ga-NOTA-MVK-ZHER2:2891 was comparable to that of [68Ga]Ga-NOTA-ZHER2:2891 at all the time points, while the kidney uptake was significantly reduced 40 min p.i. (P < 0.05). The biodistribution study in healthy volunteers showed that the kidney uptake of MVK ligand was significantly lower than that of the control ligand at 1 h p.i. (P < 0.05), with the SUVmean of 34.3 and 45.8, respectively, while the uptakes of the two ligands in the other organs showed negligible difference. The effective doses of the MVK ligand and the control one were 26.1 and 28.7 µSv/MBq, respectively. The enzymolysis fragment of [68Ga]Ga-NOTA-Met-OH was observed in the urine samples of healthy volunteers injected with the MVK ligand, indicating that the enzymolysis clearance strategy worked in humans. The PET/CT study of patients showed that the range of SUVmax of HER2-positive lesions was 9.4-21, while that of HER2-negative lesions was 2.7-6.2, which suggested that the MVK modification did not affect the ability of ZHER2:2891 structure to bind with HER2. CONCLUSION: We for the first time demonstrated that enzymolysis clearance strategy can effectively reduce renal radioactivity accumulation in humans. This strategy is expected to decrease renal radiation dose of peptide and small protein-based radiotracers, especially in the field of radionuclide therapy.


Assuntos
Radioisótopos de Gálio , Rim , Receptor ErbB-2 , Humanos , Animais , Camundongos , Receptor ErbB-2/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo , Feminino , Linhagem Celular Tumoral , Distribuição Tecidual , Proteínas Recombinantes de Fusão/farmacocinética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
5.
BMC Anesthesiol ; 24(1): 26, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229019

RESUMO

BACKGROUND: In on-pump cardiac surgery, the albumin priming strategy could maintain colloid osmotic pressure better than crystalloid solutions and reduce excessive perioperative fluid balance. However, a high-quality meta-analysis is required to compare the safety of these approaches in perioperative red blood cell (RBC) transfusions. Owing to limited direct evidence, we conducted a network meta-analysis (NMA) to increase the pool of studies and provide indirect evidence. METHODS: The pre-defined primary outcomes were intraoperative and the first 24 h postoperative RBC transfusion volume in units. The pre-defined secondary outcome was postoperative blood loss (the first 24 h). We reviewed all randomized controlled trials comparing albumin, crystalloid, and artificial colloid priming strategies. Studies that only displayed pre-defined outcomes could be included. A pairwise meta-analysis was performed on studies that directly compared the pre-defined outcomes between albumin and crystalloids. Additionally, a random-effects network meta-analysis (NMA) model was employed to generate indirect evidence for the pre-defined outcomes between albumin and crystalloids. RESULTS: The literature search identified 830 studies,10 of which were included in the final analysis. Direct meta-analysis indicated that crystalloid priming significantly decreased total perioperative RBC transfusions (MD: -0.68U; 95%CI: -1.26, -0.09U; P = 0.02) and intraoperative RBC transfusions (MD: -0.20U; 95%CI: -0.39, -0.01U; P = 0.03) compared to albumin. Postoperative RBC transfusions showed a decreasing trend in the crystalloid group; however, the difference was not statistically significant. (MD: -0.16U; 95%CI: -0.45, 0.14U; P = 0.30). After including indirect evidence, the NMA results continued to demonstrate a higher RBC receiving with the albumin priming strategy compared to crystalloids, although the differences did not reach statistical significance. For postoperative blood loss, direct evidence showed no significant differences between albumin and crystalloid priming strategies. However, NMA evidence displayed that albumin exist higher probability of reducing postoperative blood loss than crystalloid. CONCLUSION: Both direct and NMA evidence indicated that the albumin priming strategy resulted in more perioperative RBC transfusions than crystalloids. Considering the additional blood management burden, the application of an albumin-priming strategy in on-pump cardiac surgery still needs more consideration.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Transfusão de Eritrócitos , Humanos , Soluções Cristaloides , Metanálise em Rede , Albuminas , Hemorragia Pós-Operatória , Coloides
6.
ASAIO J ; 70(3): 241-247, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923309

RESUMO

Sepsis is an unusual systemic reaction with high mortality and secondary septic liver injury is proposed to be the major cause of mortality. Extracorporeal membrane oxygenation (ECMO) can enhance terminal organ perfusion by elevating circulatory support which is used in severe sepsis patients. However, the interaction of blood components with the biomaterials of the extracorporeal membrane elicits a systemic inflammatory response. Besides, inflammation and apoptosis are the main mediators in the pathophysiology of septic liver injury. Therefore, we investigated the protective effect of Deoxyribonuclease I (DNase I) against septic liver injury supported by ECMO in rats. Sepsis was induced by lipopolysaccharide (LPS) and 24 hours after the administration, the rats were treated with ECMO. Then blood samples and liver tissues were collected. DNase I significantly attenuated the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and significantly decreased hepatic levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, myeloperoxidase (MPO), downstream inflammatory factor interleukin-1ß (IL-1ß) and interleukin-18 (IL-18), and improved neutrophil infiltration. Additionally, DNase I significantly reduced the expression of apoptosis key protein and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL)-labeled apoptotic hepatocytes. In summary, our findings demonstrated that DNase I alleviates liver injury in ECMO-supported septic rats by reducing the inflammatory and apoptotic responses.


Assuntos
Oxigenação por Membrana Extracorpórea , Sepse , Humanos , Ratos , Animais , Fígado/metabolismo , Hepatócitos , Sepse/terapia , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/farmacologia
7.
Mol Pharm ; 20(11): 5646-5654, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862042

RESUMO

P137 is a novel oxalyldiaminopropionic acid-urea-based prostate-specific membrane antigen (PSMA) targeting agent. This study compared the uptake patterns of 68Ga-P137 and the FDA-approved PET tracer 68Ga-PSMA-11 for diagnosing prostate cancer (PCa). Sixteen patients suspected of PCa were scanned by 68Ga-PSMA-11 and 68Ga-P137 PET/CT, respectively, followed by prospective analysis. The tumor-to-background ratio was calculated using normal prostate tissue, blood pool, muscle, and urine as backgrounds. Pathology or follow-up results were used to analyze uptake patterns of benign/malignant lesions and various organs. Thirteen patients were diagnosed with PCa and three with benign prostate diseases (BPD). The number and location of primary lesions, lymph node metastasis (LNM) (n = 25), bone metastasis (n = 30), and liver metastasis (n = 3) detected by the two tracers were identical. Maximum standardized uptake value (SUVmax), tumor/normal prostate ratio, as well as semiquantitative miPSMA-ES and PRIMARY diagnostic scores (P all >0.05) showed similar uptake levels of primary lesions between 68Ga-P137 and 68Ga-PSMA-11. Compared to 68Ga-P137, the SUVmax of 68Ga-PSMA-11 was significantly higher for bone metastasis, LNM, and liver metastasis (14.9 ± 7.2 vs 9.1 ± 4.4, 14.4 ± 5.0 vs 7.5 ± 2.4, 13.9 ± 2.0 vs 8.8 ± 2.4, P all <0.05). One-hour postinjection, SUVmax of the duodenum (9.4 ± 2.1 vs 16.2 ± 6.1), kidney (19.4 ± 4.3 vs 45.6 ± 20.9), and urine (14.1 ± 7.1 vs 42.1 ± 25.9) were significantly lower for 68Ga-P137 than for 68Ga-PSMA-11 (P all <0.05), whereas the radioactivity accumulation of blood pool and muscle (3.9 ± 0.5 vs 1.6 ± 0.4, 1.0 ± 0.1 vs 0.6 ± 0.1, P all <0.05) of 68Ga-P137 was significantly higher than 68Ga-PSMA-11. The uptake level of 68Ga-P137 has no significant difference from that of 68Ga-PSMA-11 in prostate primary lesions, and their imaging performances are visually equivalent for both primary and metastatic lesions, despite a higher blood pool and muscle background and a lower uptake in metastatic lesions. Due to the lower urine excretion of 68Ga-P137, primary prostate lesions near the urine can potentially be displayed clearer than 68Ga-PSMA-11.


Assuntos
Neoplasias Ósseas , Neoplasias Hepáticas , Neoplasias da Próstata , Masculino , Humanos , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Metástase Linfática , Neoplasias Ósseas/secundário
8.
J Nucl Med ; 64(12): 1880-1888, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827842

RESUMO

Kirsten rat sarcoma (KRAS) mutations are an important marker for tumor-targeted therapy. In this study, we sought to develop a KRASG12C oncoprotein-targeted PET tracer and to evaluate its translational potential for noninvasive imaging of the KRASG12C mutation in non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) patients. Methods: [18F]PFPMD was synthesized on the basis of AMG510 (sotorasib) by attaching a polyethylene glycol chain to the quinazolinone structure. The binding selectivity and imaging potential of [18F]PFPMD were verified by cellular uptake, internalization, and blocking (H358: KRASG12C mutation; A549: non-KRASG12C mutation) studies, as well as by a small-animal PET/CT imaging study on tumor-bearing mice. Five healthy volunteers were enrolled to assess the safety, biodistribution, and dosimetry of [18F]PFPMD. Subsequently, 14 NSCLC or CRC patients with or without the KRASG12C mutation underwent [18F]PFPMD and [18F]FDG PET/CT imaging. The SUVmax of tumor uptake of [18F]PFPMD was measured and compared between patients with and without the KRASG12C mutation. Results: [18F]PFPMD was obtained with a high radiochemical yield, radiochemical purity, and stability. The protein-binding assay showed that [18F]PFPMD selectively binds to the KRASG12C protein. [18F]PFPMD uptake was significantly higher in H358 than in A549 and was decreased by pretreatment with AMG510 (H358 vs. A549: 3.22% ± 0.28% vs. 2.50% ± 0.25%, P < 0.05; block: 2.06% ± 0.13%, P < 0.01). Similar results were observed in tumor-bearing mice on PET imaging (H358 vs. A549: 3.93% ± 0.24% vs. 2.47% ± 0.26% injected dose/g, P < 0.01; block: 2.89% ± 0.29% injected dose/g; P < 0.05). [18F]PFPMD was safe in humans and was excreted primarily by the gallbladder and intestines. The whole-body effective dose was comparable to that of [18F]FDG. The accumulation of [18F]PFPMD in KRASG12C mutation tumors was significantly higher than that in non-KRASG12C mutation tumors (SUVmax: 3.73 ± 0.58 vs. 2.39 ± 0.22, P < 0.01) in NSCLC and CRC patients. Conclusion: [18F]PFPMD is a safe and promising PET tracer for noninvasive screening of the KRASG12C mutation status in NSCLC and CRC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Colorretais , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Fluordesoxiglucose F18/uso terapêutico , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Mutação , Pulmão/patologia , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/genética
9.
Mol Imaging Biol ; 25(5): 857-866, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37407745

RESUMO

PURPOSE: This study aims to compare the diagnostic efficacy of 68Ga-FAPI-04 PET and 18F-FDG PET for detecting anastomotic recurrence in postoperative patients with gastrointestinal cancer, and to characterize the signal pattern over time at surgical wounds on both PET imaging. METHODS: Gastrointestinal cancer patients who planned to 68Ga-FAPI-04 and 18F-FDG PET/CT imaging for postoperative surveillance were involved. The SUVmax at surgical wounds were assessed. Endoscopic pathology confirmed anastomotic recurrence or it was ruled out by imaging and clinical follow-up. The sensitivity, specificity, positive and negative predictive values (PPV and NPV), and accuracy of the two PET imaging in detecting anastomotic recurrence were compared. Relationships between tracer uptake at surgical wounds and postoperative time were also analyzed. RESULTS: Compared with non-recurrent patients, the recurrent patients exhibited a significantly higher anastomotic SUVmax on 68Ga-FAPI-04 PET (SUVmax: 9.92 ± 4.36 vs. 2.81 ± 1.86, P = 0.002). Sensitivity, specificity, PPV, NPV, and accuracy of detecting anastomotic recurrence were 100.0%, 87.3%, 41.7%, 100.0%, and 88.3% for 68Ga-FAPI-04 PET, and 60.0%, 81.8%, 23.1%, 95.7%, and 80.0% for 18F-FDG PET, respectively. Although 68Ga-FAPI-04 PET signal at surgical wounds showed a slight trend to decrease with time, no statistical difference was observed over months post-surgery (P > 0.05). CONCLUSIONS: Both tracers displayed high NPVs in identifying anastomotic recurrence with a higher sensitivity to 68Ga-FAPI-04. Tracer uptake at anastomotic sites does not decrease significantly over time, which results in low PPVs for both PET. Therefore, it is difficult to differentiate anastomotic recurrence from inflammation on either PET imaging.

10.
Mol Imaging Biol ; 25(5): 887-896, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37490189

RESUMO

OBJECTIVES: Our purpose was to compare the performance of prostate-specific membrane antigen (PSMA)-positron emission tomography (PET) traditional fixed threshold (FT) and newly established Prostate Imaging Reporting and Data System (PI-RADS)-based segmented threshold (ST) for diagnosing clinically significant prostate cancer (csPCa). METHODS: The study retrospectively included 218 patients who underwent multiparametric magnetic resonance imaging (mpMRI) and PSMA-PET examination for suspected prostate cancer (PCa) from January 2018 to November 2021. Lesions with Gleason score ≥ 3 + 4 were diagnosed as csPCa. In PSMA-PET maximum standardized uptake value (SUVmax), the FT for all the lesions and STs for lesions with different PI-RADS score for diagnosing csPCa were determined by receiver operating characteristic (ROC) curves analysis and compared with Z test. The McNemar test was used to compare sensitivity and specificity. RESULTS: Among the 218 patients, there were 113 csPCa and 105 non-csPCa. The PSMA-PET FT was SUVmax > 5.3 (area under the curve, AUC = 0.842) and STs for PI-RADS 3/4/5 were SUVmax > 4.2/5.7/6.0 (AUCs = 0.870/0.867/0.882), respectively. The AUC of PSMA-PET ST was higher than that of PSMA-PET FT (0.872 vs. 0.842), especially for PI-RADS 3 (0.870 vs. 0.653). Multimodality diagnostic criteria combining PSMA-PET ST and PI-RADS scores of mpMRI was established and its AUC was higher than that of PSMA-PET ST (0.893 vs. 0.872) and significantly higher than that of PSMA-PET FT (0.893 vs. 0.842) with an improvement in sensitivity (93% vs. 78%, p < 0.05) without significantly sacrificing specificity (86% vs. 91%, p > 0.05). CONCLUSIONS: For diagnosing csPCa, PI-RADS-based PSMA-PET segmented threshold achieved better performance than traditional fixed threshold, especially for PI-RADS 3 lesions. Multimodality diagnostic criteria demonstrated higher diagnostic performance than segmented threshold and significantly better than PSMA-PET fixed threshold for detecting csPCa.

11.
Int J Med Sci ; 20(5): 627-638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082735

RESUMO

Neurologic abnormalities occurring after deep hypothermic circulatory arrest (DHCA) remain a significant concern. However, molecular mechanisms leading to DHCA-related cerebral injury are still ill-defined. Circular RNAs (circRNAs) are a class of covalently closed non-coding RNAs and can play important roles in different types of cerebral injury. This study aimed to investigate circRNAs expression profiles in rat hippocampus after DHCA and explore the potential functions of circRNAs in DHCA-related cerebral injury. Hence, the DHCA procedure in rats was established and a transcriptomic profiling of circRNAs in rat hippocampus was done. As a result, a total of 35192 circRNAs were identified. Among them, 339 circRNAs were dysregulated, including 194 down-regulated and 145 up-regulated between DHCA and sham group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed based on the host genes of all dysregulated circRNAs. Also, 4 circRNAs were validated by RT-qPCR (rno_circ_0028462, rno_circ_0037165, rno_circ_0045161 and rno_circ_0019047). Then a circRNA-microRNA (miRNA) interaction network involving 4 candidate circRNAs was constructed. Furthermore, functional enrichment analysis of the miRNA-targeting mRNAs of every candidate circRNA was conducted to gain insight into each of the 4 circRNAs. Our study provided a better understanding of circRNAs in the mechanisms of DHCA-related cerebral injury and some potential targets for neuroprotection.


Assuntos
Lesões Encefálicas , MicroRNAs , Ratos , Animais , RNA Circular/genética , RNA Circular/metabolismo , Transcriptoma/genética , Parada Circulatória Induzida por Hipotermia Profunda/efeitos adversos , Parada Circulatória Induzida por Hipotermia Profunda/métodos , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Hipocampo/metabolismo
12.
Mol Pharm ; 20(3): 1750-1757, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36668905

RESUMO

Coronavirus disease 2019 (COVID-19) is a serious threat to public health and is in urgent need of specific drugs. Meplazumab, a humanized monoclonal antibody targeting CD147, was confirmed to competitively block the binding between the spike of syndrome coronavirus 2 (SARS-CoV-2) and CD147, making meplazumab a promising candidate drug for COVID-19. In this study, biodistribution and dosimetry of 131I-labeled meplazumab were performed to further evaluate its potential as a therapeutic drug for COVID-19. 131I-meplazumab was both safe and tolerant in mice and healthy volunteers. A biodistribution study was performed in normal mice, and blood samples were used for pharmacokinetic analysis. Three healthy volunteers were included and subjected to single-photon-emission computed tomography (SPECT) imaging of 131I-meplazumab within 2 weeks. The distribution in mice and humans was consistent with the in vivo distribution of CD147. Biodistribution and SPECT imaging results exhibited that the liver was the organ with the highest uptake for both mice and humans. Deiodination of 131I-meplazumab can be observed in vivo, and taking Lugol's solution can protect the thyroid gland effectively. The pharmacokinetic characteristics of 131I-meplazumab in mice and humans best fit the two-compartment model. The clearance half-life (T1/2ß) in mice and humans was 117.4 and 223.5 h, respectively. The results indicated that its pharmacokinetic properties in vivo were ideal. The effective dose calculated from healthy volunteers was 0.811 ± 0.260 mSv·MBq-1, which was twice the value calculated from mice. It was safe and feasible to perform human clinical imaging experiments using a diagnostic dose of 131I-meplazumab after thyroid closure by Lugol's solution. This study will provide more experimental basis for advancing the clinical translation of meplazumab and will be valuable in evaluating therapeutic interventions for patients with COVID-19, as well as providing a reference for clinical translation studies of other antibody drugs.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Distribuição Tecidual , SARS-CoV-2 , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Radiometria
13.
Exp Neurol ; 361: 114298, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36525998

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by abnormal social behavior and communication. The autism susceptibility candidate 2 (AUTS2) gene has been associated with multiple neurological diseases, including ASD. Glucose metabolism plays an important role in social behaviors associated with ASD, but the potential role of AUTS2 in glucose metabolism has not been studied. Here, we generated Auts2flox/flox; Emx1Cre+ conditional knockout mice with Auts2 deletion specifically in Exm1-positive neurons in the brain (Auts2-cKO mice) to evaluate the effects of Auts2 knockdown on social behaviors and metabolic pathways. Auts2-cKO mice exhibited ASD-like behaviors, including impaired social interactions and repetitive grooming behaviors. At the molecular level, we found that Auts2 knockdown reduced brain glucose uptake and inhibited the pentose phosphate pathway. Auts2 knockdown also resulted in signs of oxidative stress, and we documented increased levels of reactive oxygen species and malondialdehyde as well as decreased levels of antioxidant molecules, including glutathione and superoxide dismutases in Auts2-cKO mouse brains compared to controls. Finally, Auts2 knockdown significantly disrupted mitochondrial homeostasis and inhibited activity of the SIRT1-SIRT3 axis. Taken together, our findings indicate that loss of AUTS2 expression in Emx1-expressing cells induces multiple changes in metabolic pathways that have been linked to the pathology of ASD. Further characterization of the role of AUTS2 in Emx1-expressing cells in regulating the metabolism of brain neurons may identify opportunities to treat ASD and AUTS2-deficiency disorders with metabolism-targeted therapies.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Comportamento Social , Estresse Oxidativo , Glucose , Proteínas do Citoesqueleto/metabolismo , Fatores de Transcrição/metabolismo
14.
Mol Pharm ; 19(5): 1548-1556, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35357154

RESUMO

High and sustained renal radioactivity accumulation is a major challenge in peptide-based radionuclide imaging and therapy. However, neutral endopeptidase (NEP)-based enzymatic hydrolysis to release and excrete the radioactive fragments has been proven to be an effective and promising way to reduce renal accumulation. Despite the improvement, the effect is still far from being satisfactory. To further reduce kidney uptake, we studied the relationship between the enzymatic reaction rate and the substrate concentration and came up with a combined probe strategy. Model compounds Boc-MVK-Dde and Boc-MFK-Dde were used for an in vitro enzymatic digestion study. NOTA-Exendin 4 and NOTA-MVK-Exendin 4 were labeled with 64Cu for in vivo dose-dependent micro-positron emission tomography (PET) studies. Groups 1 and 2 were injected with 0.2 and 0.8 nmol of 64Cu-NOTA-Exendin 4, respectively. Groups 3-6 were injected with 0.2, 0.8, 1.0, and 1.4 nmol of 64Cu-NOTA-MVK-Exendin 4, respectively. Groups 7 and 8 were co-injected with 0.2 nmol of 64Cu-NOTA-MVK-Exendin 4 and NOTA-MVK-PEG5K (1.3 and 2.6 nmol). The radioactivity uptakes were determined and compared within and among the groups. The in vitro cleavage study for both Boc-MVK-Dde and Boc-MFK-Dde indicated that within a certain concentration range, the enzyme digestion rate increased with increasing substrate concentration. The microPET images showed that the renal clearance could be accelerated significantly by increasing the injection dose of 64Cu-NOTA-MVK-Exendin 4, with the kidney uptakes being 60.98, 43.01, and 16.10 % ID/g at 1 h for groups 3, 4 and 5, respectively. Unfortunately, the tumor uptakes were also significantly inhibited as the injected dose of the tracer increased. However, with the co-injection of NOTA-MVK-PEG5K, the renal accumulation was significantly decreased without hampering the tumor uptake. As a result, the tumor-to-kidney ratios were significantly improved, which were 1.93, 3.47, 1.74, and 3.38 times that of group 3 at 1, 4, 24, and 48 h, respectively. The enzymatic reaction rate of NEP is dependent on the concentration of the substrates both in vitro and in vivo. The combined probe strategy developed in this study can dramatically reduce the renal accumulation of a peptide radioligand without affecting the tumor uptake, which shows great potential in peptide-based radiotheranostics.


Assuntos
Neoplasias , Radioatividade , Humanos , Linhagem Celular Tumoral , Radioisótopos de Cobre , Digestão , Exenatida/química , Compostos Heterocíclicos com 1 Anel/química , Peptídeos/química , Tomografia por Emissão de Pósitrons/métodos
15.
Front Oncol ; 11: 750376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660313

RESUMO

PURPOSE: To synthesize the dimer of GX1 and identify whether its affinity and targeting are better than those of GX1. To prepare 68Ga-DOTA-KEK-(GX1)2 and to apply it to PET and Cerenkov imaging of gastric cancer. METHODS: 68Ga-DOTA-KEK-(GX1)2 was prepared, and the labeling yield and stability were determined. Its specificity and affinity were verified using an in vitro cell binding assay and competitive inhibition test, cell immunofluorescence, and cell uptake and efflux study. Its tumor-targeting ability was determined by nano PET/CT and Cerenkov imaging, standardized uptake value (SUV), signal-to-background ratio (SBR) quantification, and a biodistribution study in tumor-bearing nude mice. RESULTS: 68Ga-DOTA-KEK-(GX1)2 was successfully prepared, and the labeling yield was more than 97%. It existed stably for 90 min in serum. The binding of 68Ga-DOTA-KEK-(GX1)2 to cocultured HUVECs (Co-HUVECs) was higher than that to human umbilical vein endothelial cells (HUVECs), BGC823 cells, and GES cells. It was also higher than that of 68Ga-DOTA-GX1, indicating that the dimer did improve the specificity and affinity of GX1. The binding of KEK-(GX1)2 to Co-HUVECs was significantly higher than that of GX1. Additionally, the uptake of 68Ga-DOTA-KEK-(GX1)2 by Co-HUVECs was higher than that of 68Ga-DOTA-GX1 and reached a maximum at 60 min. Nano PET/CT and Cerenkov imaging showed that the tumor imaging of the nude mice injected with 68Ga-DOTA-KEK-(GX1)2 was clear, and the SUV and SBR value of the tumor sites were significantly higher than those of the nude mice injected with 68Ga-DOTA-GX1, indicating that the probe had better targeting in vivo. Finally, the biodistribution showed quantitatively that when organs such as the kidney and liver metabolized rapidly, the radioactivity of the tumor site of the nude mice injected with 68Ga-DOTA-KEK-(GX1)2 decreased relatively slowly. At the same time, the percentage of injected dose per gram (%ID/g) of the tumor site was higher than that of other normal organs except the liver and kidney at 60 min, which indicated that the tumor had good absorption of the probe. CONCLUSION: GX1 was modified successfully, and the in vivo and in vitro properties of the GX1 dimer were significantly better than those of GX1. The imaging probe, 68Ga-DOTA-KEK-(GX1)2, was successfully prepared, which provides a candidate probe for PET and Cerenkov diagnosis of gastric cancer.

16.
J Nanobiotechnology ; 19(1): 334, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689764

RESUMO

Herein, an unprecedented synergistic strategy for the development of high-performance NIR-II fluorophore is proposed and validated. Based on an unsymmetrical cyanine dye design strategy, the NIR-II emissive dye NIC was successfully developed by replacing only one of the indoline donors of symmetrical cyanine dye ICG with a fully conjugated benz[c,d]indole donor. This minor structural change maximally maintains the high extinction coefficient advantage of cyanine dyes. NIC-ER with endogenous albumin-hitchhiking capability was constructed to further enhance its in vivo fluorescence brightness. In the presence of HSA (Human serum albumin), NIC-ER spontaneously resides in the albumin pocket, and a brilliant ~89-fold increase in fluorescence was observed. Due to its high molar absorptivity and moderate quantum yield, NIC-ER in HSA exhibits bright NIR-II emission with high photostability and significant Stokes shift (>110 nm). Moreover, NIC-ER was successfully employed for tumor-targeted NIR-II/PA imaging and efficient photothermal tumor elimination. Overall, our strategy may open up a new avenue for designing and constructing high-performance NIR-II fluorophores.


Assuntos
Carbocianinas , Corantes , Técnicas Fotoacústicas/métodos , Terapia Fototérmica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Albuminas/metabolismo , Animais , Carbocianinas/química , Carbocianinas/metabolismo , Carbocianinas/farmacologia , Linhagem Celular Tumoral , Corantes/química , Corantes/metabolismo , Corantes/farmacologia , Camundongos , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia
17.
Bioconjug Chem ; 32(9): 2108-2116, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34486879

RESUMO

The kidney is the main dose-limiting organ in radioligand therapy (RLT), and there is an urgent need for reducing renal radioactivity accumulation. According to the enzymolysis clearance strategy, the first objective of this study is to test whether enzymolysis efficiency can be improved by introducing a hydrophobic amino acid with a bulkier side chain to the second position of the cleavable sequence, and the second objective is to screen an optimal sequence to minimize the renal uptake. Four exendin 4 (Ex4) peptide analogues with different cleavable sequences were synthesized and labeled with 68Ga. Both in vitro and in vivo metabolism studies were performed using either the model compounds or the complete probes. The in vitro stabilities of the tracers were evaluated in PBS and mouse serum. The microPET images were acquired in the INS-1 tumor model at different time points, and the radioactivity uptakes of the probes in tumors and kidneys were determined and compared. All the probes were stable in both PBS and mouse serum for at least 1 h. The in vitro cleavage study for both model compounds and intact probes showed enzymolysis efficiency in the following order: MWK > MFK > MVK > MGK. The in vivo metabolism study confirmed that a fragment of 68Ga-NOTA-Met-OH appeared in both kidney and urine samples for all analogues with MVK, MFK, and MWK sequences. The microPET images showed that the tumor uptakes of all the modified probes were comparable to those of the control, while the kidney uptakes were significantly reduced by inserting the MWK, MFK, or MVK linker. The tumor-to-kidney ratios at 0.5, 1, and 2 h time points showed the following order: 68Ga-NOTA-MWK-Ex4 > 68Ga-NOTA-MFK-Ex4 > 68Ga-NOTA-MVK-Ex4. In this study, based on the enzymolysis clearance strategy and the preference of the enzyme, different sequences were designed and compared both in vitro and in vivo. The results indicated that the larger the steric hindrance of the second hydrophobic amino acid side chain, the more effective the enzymatic hydrolysis, with enzymolysis efficiency in the following order: MWK > MFK > MVK > MGK. MWK appears to be the most effective sequence in reducing renal radioactivity accumulation of exendin 4 peptide derivatives.


Assuntos
Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular Tumoral , Exenatida , Humanos , Rim , Camundongos
18.
Mol Pharm ; 18(9): 3509-3518, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34410132

RESUMO

Although KRAS has been an important target for many cancers, direct inhibition of oncogenic RAS remains challenging. Until recently, covalent KRAS G12C-specific inhibitors have been developed and progressed to the clinics. Nevertheless, not all patients benefit from these covalent inhibitors. At present, identification of candidates for this treatment requires tissue biopsies and gene sequencing, which are invasive, time-consuming, and could be of insufficient quality and limited predictive value owing to tumor heterogeneity. The use of noninvasive molecular imaging techniques such as PET and SPECT for spying KRAS G12C mutation in tumors provide a promising strategy for circumventing these hurdles. In the present study, based on the covalent G12C-specific inhibitor ARS-1620, we sought to develop radiolabeled small molecules for direct imaging of the KRAS mutation status in tumors. [131I]I-ARS-1620 and [18F]F-ARS-1620 were successfully prepared with high radiochemical yield, radiochemical purity, and molar activity. In vitro and in vivo studies have demonstrated the affinity, specificity, and capacity of [131I]I-ARS-1620 for direct imaging of the oncogenic KRAS G12C mutant. This initial attempt allows us to directly screen the KRAS G12C mutant for the first time in vivo.


Assuntos
Neoplasias/diagnóstico , Piperazinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Quinazolinas/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Animais , Linhagem Celular Tumoral , Feminino , Radioisótopos de Flúor , Humanos , Radioisótopos do Iodo , Camundongos , Simulação de Acoplamento Molecular , Imagem Molecular/métodos , Mutação , Neoplasias/genética , Piperazinas/farmacocinética , Quinazolinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Signal Transduct Target Ther ; 6(1): 194, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001849

RESUMO

Recent evidence suggests that CD147 serves as a novel receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Blocking CD147 via anti-CD147 antibody could suppress the in vitro SARS-CoV-2 replication. Meplazumab is a humanized anti-CD147 IgG2 monoclonal antibody, which may effectively prevent SARS-CoV-2 infection in coronavirus disease 2019 (COVID-19) patients. Here, we conducted a randomized, double-blinded, placebo-controlled phase 1 trial to evaluate the safety, tolerability, and pharmacokinetics of meplazumab in healthy subjects, and an open-labeled, concurrent controlled add-on exploratory phase 2 study to determine the efficacy in COVID-19 patients. In phase 1 study, 59 subjects were enrolled and assigned to eight cohorts, and no serious treatment-emergent adverse event (TEAE) or TEAE grade ≥3 was observed. The serum and peripheral blood Cmax and area under the curve showed non-linear pharmacokinetic characteristics. No obvious relation between the incidence or titer of positive anti-drug antibody and dosage was observed in each cohort. The biodistribution study indicated that meplazumab reached lung tissue and maintained >14 days stable with the lung tissue/cardiac blood-pool ratio ranging from 0.41 to 0.32. In the exploratory phase 2 study, 17 COVID-19 patients were enrolled, and 11 hospitalized patients were involved as concurrent control. The meplazumab treatment significantly improved the discharged (P = 0.005) and case severity (P = 0.021), and reduced the time to virus negative (P = 0.045) in comparison to the control group. These results show a sound safety and tolerance of meplazumab in healthy volunteers and suggest that meplazumab could accelerate the recovery of patients from COVID-19 pneumonia with a favorable safety profile.


Assuntos
Anticorpos Monoclonais Humanizados , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Pulmão/metabolismo , SARS-CoV-2/metabolismo , Adolescente , Adulto , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacocinética , COVID-19/patologia , Método Duplo-Cego , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade
20.
Biomater Sci ; 9(7): 2584-2597, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595023

RESUMO

It is widely accepted that a small particle size and rough surface can enhance tumor tissue accumulation and tumor cellular uptake of nanoparticles, respectively. Herein, sub-50 nm urchin-inspired disulfide bond-bridged mesoporous organosilica nanoparticles (UMONs) featured with a spiky surface and glutathione (GSH)-responsive biodegradability were successfully synthesized by a facile one-pot biphasic synthesis strategy for enhanced cellular internalization and tumor accumulation. l-Arginine (LA) is encapsulated into the mesopores of UMONs, whose outer surface is capped with the gatekeeper of ultrasmall gold nanoparticles, i.e., UMONs-LA-Au. On the one hand, the mild acidity-activated uncapping of ultrasmall gold can realize a tumor microenvironment (TME)-responsive release of LA. On the other hand, the unique natural glucose oxidase (GOx)-mimicking catalytic activity of ultrasmall gold can catalyze the decomposition of intratumoral glucose to produce acidic hydrogen peroxide (H2O2) and gluconic acid. Remarkably, these products can not only further facilitate the release of LA, but also catalyze the LA-H2O2 reaction for an increased nitric oxide (NO) yield, which realizes synergistic catalysis-enhanced NO gas therapy for tumor eradication. The judiciously fabricated UMONs-LA-Au present a paradigm of TME-responsive nanoplatforms for both enhanced cellular uptake and tumor-specific precision cascaded therapy, which broadens the range of practical biomedical applications and holds a significant promise for the clinical translation of silica-based nanotheranostics.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro , Peróxido de Hidrogênio , Tamanho da Partícula , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...